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Background — Segmented Flows for Practical Applications A Results and Discussion

Segmented microflows (nanoliter-picoliter droplet scale) are a relatively novel advancement in bio-analytical assays. Parametric studies have revealed various trends.
In addition to reduced sample sizes and high throughput, properly designed and treated chips can generate flows with * Droplet effect parameter becomes linear with droplet
no contact between the testing fluid and channel walls, preventing cross-contamination between droplets. However, we spacing when droplets are sufficiently far apart. This
need a working understanding of the physics involved in order to predictably and optimally generate these flows. allows the formulation of a b 38 3-s o-g o2
For low-capillary number flows, an additional complication is the multi-scale nature of the flow. The film of carrier fluid relation to eliminate droplet s B
separating the droplet from the walls may be orders of magnitude smaller than the width of the channel. Not only are spacing from consideration : o bbb
these films difficult to visualise experimentally, but even modelling such different TR In other parametric studies. o
length scales numerically is not straightforward. Unfortunately, information from this ko °f°p;;':aj;_g;fc“0_0023
region is vital to understanding things such as the pressure drop and droplet slip N 7 R * Relative pressure drop @ D, = 0.645, Ca, = 0.0023
velocity, and to predict the stability of the thin film, which prevents the droplets from R s g (U decreases at higher capillary OBo=12,Car =020

\_ wetting the walls and interrupting the flow (see image). iy Wetting patch numbers, when plugs become & |
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Problem Setup and Notation Research Code — Hybrid Front-Tracking/ thicker. Reynolds number is
1@ Dp=1.2,Ca;=0.42

. unimportant for Re; < 1~10.
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Conditon | 1.x equations on a regular 3-D Cartesian grid | channel width, but decreases
L‘; Diagram of problem setup and notation ° MU'tlgrld algorlthm (fast propagatlon of SOlUtIOn) again as plUgS become
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’ * Two-step predictor-corrector time integration longer
Periodic droplets/plugs of dispersed fluid (water) in an » Code parallelized using MPI standard |

Immiscible carrier fluid (fluorinated liguid + surfactant) > Liquid-liquid interface modelled as a mobile, adaptive Further code modifications are needed to bridge the

Reynolds number, Rey = £6/¢*/D) D triangular mesh with 2"-order interpolation data gap with low-capillary number plug flows (thin
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Canillary number. Ca.. = keUctin) * Mesh used to calculate local fluid properties and films). A lubrication theory technique is being adapted to
piary e o surface tension; then interpolated onto fixed grid the current code in order to achieve this.

_ VPl2—phase Calculated velocity field used to advect the mesh
valcarri_er fluid,J=]c+Jp Peskin’'s smoothing used for grid-mesh
Droplet gff_ect parameter reflects localised Pressure Interpolation to avoid discontinuituous coefficients
drop variation from constant pressure-drop profile, Project goal: Evaluate, validate, and, where possible,
APgrop _ A (7P —|VP|. ) Improve the code as an efficient and robust solver for
2—phase carrier fluid,] : | £ =3 f
Rey Rer multiphase channel flows. . I
Capillary flows: D, < 1, droplet shape dominated by — . Orthogonal Cross-Section | ww s 7 s s 4 15 5 7 9
uid properties
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Pl u g fl ows: D D > 1, d o p | et (p | u g) a.p p FOacC h es C h ann el ‘ 1 r~+**1
walls, high dependence on Ca T — Thin-film physics and wall wettability

Project goals: \_ must be properly introduced
- |nvestigate a wide range of flows, including those Fluid velocity
difficult or impossible to achieve in the laboratory Sg:]‘t’gtizfsrfgac
Map the dependence/sensitivity of relevant
parameters to different characteristic values
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Relative pressure drop, ¢~ = Diagonal Cross-Section
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