The Influence of Blend Composition on Density of States and Recombination in an Efficient Polymer:Fullerene Organic Solar Cell System

<u>Steven Hawks¹</u>, Florent Deledalle², Thomas Kirchartz³, Gang Li¹, James Durrant², and Yang Yang^{1,4}

¹Department of Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA

²Department of Chemistry and Centre for Plastic Electronics, Imperial College London, South Kensington SW7 2AZ, U.K.

³Department of Physics, Imperial College London, South Kensington SW7 2AZ, U.K.

Imperial College London

⁴California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA

UCLA

Introduction

`s

• Polymer:fullerene bulk heterojunction (BHJ) solar cells have recently witnessed tremendous advancements in active-layer that have enabled

J-V Characteristics

• In agreement with previous reports, we find that the optimal blend weight ratio has 60 wt% PC₇₁BM (**Figure 2 (d)**).

single-junction power conversion efficiencies to exceed 9%.

• The PBDTTT polymer family represents a breakthrough materials system, demonstrating record >9% efficiencies when combined with $PC_{71}BM.$

• Little is known about the loss processes that limit this system.

PV Device Structure Ca/Al PBDTTT-C:PC₇₁BM PEDOT:PSS ITO

Compositions Studied 67 wt.% PC₇₀BM 50 wt.% PC₇₀BM 60 wt.% PC₇₀BM Q A A Charles Contraction

- From the trends in Figure 2, we see that both the 60 wt% PC₇₁BM and 67 wt% PC₇₁BM devices are able to maintain high fill factors at thicknesses where the J_{SC} Figure 2 (b) is locally maximized.
- The 50 wt% PC₇₁BM blend begins to
- suffer losses in fill factor while the J_{SC} is still increasing with increasing thickness.

omposition	V _{OC} [mV]	J _{sc} [mA/cm²]	FF [%]	PCE [%]	Active Layer Thickness [nm]	Relative Dielectric Constant (ε _r)	Built-in Voltage [V]
50 wt% PC ₇₁ BM	715 ± 3	11.4 ± 0.1	61.3 ± 0.5	4.98 ± 0.1	67 ± 4	3.7	0.79
60 wt% PC ₇₁ BM	708 ± 1	13.6 ± 0.2	64.5 ± 0.5	6.22 ± 0.1	82 ± 2	3.8	0.805
67 wt% PC ₇₁ BM	698 ± 3	14.6 ± 0.3	60.8 ± 1.2	6.18 ± 0.1	105 ± 5	3.9	0.78

Electroluminescence

• Figure 3 shows the electroluminescence spectra for each of the PBDTTT-

Photon Energy (eV)

4000

2000

0.4 0.8 1.2 1.6 2 **q_v**(Å⁻¹)

• The luminescence transition is an indicator of the important DoS evolution that takes place over a relatively narrow composition range.

- **Figure 7** shows the out-of-plane x-ray diffraction taken from data in **Figure 8** for all blend compositions studied.
- PBDTTT-C preferentially stack in a face-on orientation with
- Figure 4 (a) indicates a significant composition-induced shift in the density of states (e.g., in a matter like Figure 4 (b)).
- The data in Figure 5 (a) and Figure 4 (c) have exactly the opposite trend one would expect if Langevin-type recombination were dominant.

We plot the mobility-lifetime product in **Figure 5 (b).** Clearly, higher PC₇₁BM concentrations result in vastly superior electrical properties in this composition range. The differences in $\mu \tau(n)$ between the 50 wt.% PC₇₁BM and 67 wt.% PC₇₁BM blends approaches an order of magnitude over the measured carrier concentration range, which explains why the 50 wt% $PC_{71}BM$ blend has suboptimal photovoltaic properties.

Figure 6 (a-c) shows the *J-V* reconstructions of all blend ratios using the methods detailed in previous works^[1] assuming that the generation rate is independent of voltage and that nongeminate recombination is the

dominating loss process throughout the photovoltaic operating regime.

^[1]C. G. Shuttle, *et al.*, *PNAS* **2010**, *107*, 16448

- The dominant recombination mechanism in optimized PBDTTT-C:PC₇₁BM solar cells is of non-Langevin and nongeminate character.
- We are able to accurately reconstruct *J*-*V* curves at multiple light intensities for all the blend compositions.
- We show that increased fullerene loading in this range energetically narrows and/or increases the magnitude
- of the DoS active in solar cell operation.