Understanding the Effects of Cationic and Anionic Substitutions in Spinel Cathodes of Lithium-ion Batteries

Arturo Gutierrez Jr. and Arumugam Manthiram

 Electrochemical Energy Laboratory \& Materials Science and Engineering ProgramThe University of Texas at Austin, TX 78712
TEXAS
MATERIALS

INTRODUCTION
Why spinel cathodes? Safety

Fuel
Less toxic

Mn Cost

Kinetics

Challenges

1. Manganese Disproportionation $\mathrm{Mn}^{\mathbf{3 +}}$

Into the electrolyte
2. Jahn-Teller Distortion

$3 d^{4}$

$2 \mathrm{Mn}^{3+} \rightarrow \mathrm{Mn}^{4+}+\mathrm{Mn}^{2+}$

Both mechanisms result
in higher capacity fade

$\uparrow \uparrow \uparrow$

Objective

Previous research has proven cation substitution for manganese can improve the spinel cathode performance but at the expense of lower capacities due to the decreased concentration of Mn^{3+}. In addition, spinel cathodes have been fluorinated to overcome the decreased capacities of doped spinel cathodes.
A series of $\mathrm{Li}_{1.1} \mathrm{Mn}_{1.8} \mathrm{M}_{0.1} \mathrm{O}_{4-\delta} \mathrm{F}_{\mathrm{\delta}}$ and $\mathrm{Li}_{1+\mathrm{x}} \mathrm{Mn}_{2-2 x} \mathrm{M}_{\mathrm{x}} \mathrm{O}_{4-\delta} \mathrm{F}_{\delta}(\mathrm{M}=\mathrm{Al}, \mathrm{Co}, \mathrm{Cr}, \mathrm{Fe}$, Ni, Ti) oxy-fluoride spinels were made by solid-state reaction followed by a low temperature fluorination reaction. The purpose of this study was to link the basic chemical properties of the dopants (M) to the electrochemical performance, with hopes of providing simple prediction tools to guide the design of new battery materials. In addition, the amount of fluorination that causes phase impurities and adverse effects to the cyclability were determined.

RESULTS

Evidence of fluorination

Combination of F^{-}and Mn^{3+} is slightly larger than O^{2-} and Mn^{4+}; therefore, an increasing lattice parameter is evidence of fluorine substitution for oxygen

Increasing capacity is evidence of fluorine substitution and increased Mn^{3+} concentration

Kinetics

Cu K $\alpha 2 \theta$ (Degrees)
Arrows indicate lithium fluoride (LiF) impurity peaks; LiF impurity peaks generally occur at fluorine content of 0.2 or greater; Cr-doped samples were generally harder to dope with F and exhibited LiF peaks at lower F^{-} substitution

[^0][^1]
Cycling performance

Each series exhibited an "average capacity fade" (shown by blue line) "Average capacity fade" was different for each series
A steady increase in capacity fade occurred at ~ 0.2 fluorine content Steady increase in capacity fade is attributed to Jahn-Teller distortion
"Average capacity fade" decreases with increasing electronegativity of doped cation in unfluorinated samples

$$
\stackrel{\text { Occurs more }}{\leftarrow}\left(2 \mathrm{Mn}^{3+} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{Mn}^{4+}\right) \xrightarrow{\text { Occurs less }}
$$

A more covalent metal oxygen bond may suppress the amount of Mn^{3+} disproportionation and subsequently reduce the amount of capacity fade

Conclusions

[^2]
[^0]: - Average capacity fade decreased with increasing electronegativity of the doped cation in fluorinated samples Generally, manganese dissolution decreased as the average capacity fade decreased

[^1]: Increased polarization occurs with increasing fluorine content in each series
 Worse kinetics suggested by increasing potential difference between redox peaks
 Kinetics worsen because of larger charge transfer gap upon fluorine substitution

[^2]: 1. The electronegativity of the dopant cations in the spinel oxide cathodes plays an important role on their cycling performance. By substituting more electronegative ions into the lattice for manganese, a more covalent metal-oxygen framework is formed. The increased covalency may suppress the amount of manganese dissolution and subsequently reduce the capacity fade.
 As the fluorine content in the spinel lattice increases, the chargedischarge kinetics worsen as indicated by an increased separation between the potentials of the charge and discharge peaks. This is attributed to the decreasing covalence of the metal-oxygen framework caused by the substitution of more electronegative fluorine for oxygen. . At a fluorine content of ~ 0.2, the capacity fade experiences a steady increase. This is due to lowering the average manganese oxidation state close to $3.5+$ and the consequent occurrence of dynamic Jahn-Teller distortion.
 2. LiF begins to form an impurity at ~ 0.2 fluorine substitution for oxygen in the lithium manganese spinel cathode material.
