THE EFFECTS OF LAND USE ON AQUATIC METHANOGENESIS THROUGH A COMBINATION OF MOLECULAR METHODS AND THE DEVELOPMENT OF A NOVEL *IN SITU* METHANE SENSOR

L. Akins, T. Ballinger, N. Bonini, A. Dunithan, E. French, J. Gray, S. Hastings, J. Kolacz, F. Minkowski, A. Roberto, R. Schoeneman, and J. Taura EARS-IGERT Cohort 2012-2013, Kent State University, Kent, Ohio 44242 and Miami University, Oxford, Ohio 45056

Introduction:

- Methane (CH₄) is a potent greenhouse gas with 72× the global warming potential of CO₂ over a 20-year period (1). As CH₄ contributes to atmospheric ozone production, reduction in CH₄ emissions could potentially slow anthropogenically induced climate change, making CH₄ a greenhouse gas of considerable ecological importance.
- Anthropogenically derived CH₄ dominates annual contributions to the atmospheric CH₄ pool (~60%), biogenic CH₄ production, *i.e.* methanogenesis, occurs as the result of anaerobic metabolism of simple organic molecules by methanogenic archaea (Fig. 1).
- Land use can dramatically affect microbial populations at the landscape scale (2); how this could potentially contribute to methanogenesis is of great concern.
- The transience and heterogeneity of CH₄ production (3) in aquatic systems makes it difficult to quantify with precision or ease, thereby the need for a cost-effective, highly mobile in situ CH₄ sensor would greatly increase the ability of researchers to monitor aquatic contributions to global methane production.

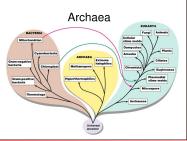


Fig. 1: Phylogenetic tree identifying the methanogenic Archaea within the context of the three domains of life

Objectives:

- To examine the effects of land use on biological methane production from aquatic ecosystems and wetlands within a watershed experiencing several land-uses types
- Development of a novel in situ methane sensor that is cost effective, portable, and capable of meeting the detection limits and accuracy necessary to compete with currently used detection methods (Fig. 2)

Methods:

- •Samples will be collected from Tinker's Creek watershed (Fig. 3) in NE Ohio, the site of numerous land-uses, including including urban, agricultural, wetland/park, and contains several point-source inputs of nutrients due to wastewater treatment plants
- Sediment, water, and gas sample collection will begin Spring 2013 at sites within each land-use type. DNA will be extracted for quantification of methanogens and methanotrophs at each site
- •Gas samples will be analyzed using a mass spectrometer for baseline methane concentrations

Acknowledgements:

This work was supported by NSF Integrated Graduate Education and Research Training grant DGE 0904560

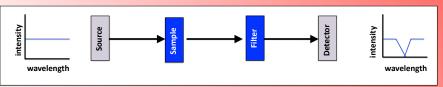


Fig. 2: Basic elements required for portable IR spectroscopy. A light beam interacts with the compound of interest, is scattered by a tunable wavelength filter, and this change in intensity is detected, allowing for quantification of the substance of interest.

Sensor Design:

- Broadband IR source propagates light into fiber optics.
- •Methane absorbes into hydrophobic coating on fiber, but water is excluded allowing IR detection of methane without interference from water.
- •Resulting transmittance spectrum is separated into component wavelengths via interfereometer and fourier transform.
- •Comparison of transmittance spectrum to standard methane spectrum gives concentration of methane in water.

Future Research:

•Complete sensor design and manufacture a prototype for field tests; once calibrated, perform comparative tests between sensor and other methods currently employed in gas detection. If successful, produce multiple sensors to be incorporated into 2013-2014 sampling plan.

References:

- 1. Intergovernmental Panel on Climate Change (2007). ClimateChange 2007 Synthesis Report, eds. R.K. Pachauri, and A. Reisinger (Geneva).
- 2. Bru, D., Ramette, A., Saby, N.P.A., Deuiedt, S., Ranjard, L., Jolivet, C., Arrouays, D., and Philipot, L. (2011). Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. *ISME Journal* 5:532-542.
- 3. Jones Jr., J.B. and Mulholland, P.J. (1998). Methane input and evasion in a hardwood forest stream: effects of subsurface flow from shallow and deep pathways. *Limnol. Oceanogr.* 43:1243-1250.