
Profiling and Characterization of Silver, Zinc Oxide and Silver/ Zinc Oxide Hybrid Nanoparticles for Antimicrobial Properties

Myisha Roberson^{1, 2}, Vijaya Rangari¹, Temesgen Samuel³, Clayton Yates² and Shaik Jeelani^{1,} ¹Department of Materials Science and Engineering, ²Department of Biology, and ³Department of Pathobiology

INTRODUCTION

Short Abstract: In this study we have synthesized Ag, ZnO and Ag/ZnO hybrid nanoparticles using microwave synthesis method and tested for their antimicrobial properties.

Motivation: Studies show and increase in infection of drug resistant pathogens, however there has been a steady decrease in the number of FDA approved antimicrobial drugs for treatment of infection.

Goal: Make a new hybrid nanoparticle material possessing antimicrobial activity to be used as an alternative therapy or additive therapy to antibiotic use.

AKNOWLEDGMENTS

Authors would like to thank National Science Foundation for their financial support through IGERT-Nanomedicine NEU/TU/UPRM grant.

METHODS

Tuskegee University

Antimicrobial Testing Techniques:

Make volumes of solution

Combine volume of NP solution with volume of microbe solution

RESULTS

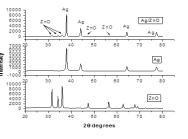


Figure 1 XRD diffractogram of the Ag, ZnO and Ag/ZnO

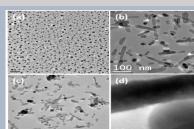
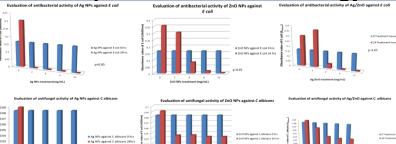



Figure 2 is TEM micrographs of a) Ag b) ZnO, c) Ag/ZnO NPs at low magnification and d) Ag/ZnO NPs at high magnification.

Concentration	Ag/ZnO hybrid NPs	Ag NPs	ZnO NPs
2 mg/mL	0%	99%	0%
4 mg/mL	73%	100%	50%
6 mg/mL	97%	100%	76%
12 mg/mL	99%	100%	81%

Cable 2: Comparison of % inhibitory activity of Ag, ZnO and Ag/ZnO NPs against C. albicans					
Concentration	Ag/ZnO hybrid NPs	Ag NPs	ZnO NPs		
2 mg/mL	16%	92%	0%		
4 mg/mL	45%	92%	45%		
6 mg/mL	50%	96%	78%		
12 mg/mL	50%	100%	96%		

CONCLUSION

The microwave synthesis technique is successfully used to synthesize Ag, ZnO and Ag/ZnO hybrid nanoparticle in 10 minutes time. However, Ag/ZnO NPs failed to excel the individual inhibitory activities of silver as an antibacterial agent or zinc oxide as an antifungal agent. Nevertheless, these results suggest that hybrid Ag/ZnO NPs have antimicrobial activities that may be used as alternatives when treating multiple or unknown infections because of their dual antifungal and antibacterial properties.