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Objective
Provide a mathematical model of shape as absrtracted from three
or higher dimensional point coulds. A shape model for point clouds
should capture only the properties of the point clouds which are in-
variant under rotation scaling, translation and arbitrary permutations
of the sequence of points in the cloud. We use the algebra of 3-
tensors introduced by Mesner and P. Bhattacharya in [5,6,7] to in-
vestigate properties of the 3-uniform hypergraphs naturally deduced
point clouds. Finally we propose to use as feature space for in-
vestigating properties of point clouds the spectral theory for tensors
introduced by E. Gnang, A. Elgammal and V. Retakh in [1].

1 Tensors from point clouds and
generalizing linear algebra

Given a finite sequence of points P in a three dimensional coordi-
nate system which we refer to as a point cloud, we have

P := (xi, yi, zi)0≤i<n (1)

We therefore note that points clouds are no more than a collection of
real value ordered triplets. By viewing the real values which appear
as coordinates of points as abstract vertex labels, we are naturally
led to assoaciate to our point cloud a directed 3-uniform hypergraph.
As typically done with, graphs we associate with the deduced di-
rected 3-uniform hypergraphs an adjacency 3-tensor.

Recall that a 3-tensor A of dimensions m × n × p denotes a rect-
angular cuboid array of numbers. The array consists of m rows, n
columns, and p depths with the entry ai,j,k occupying the position
where the ith row, the jth column, and the kthdepth meet. For many
purposes it will suffice to write

A =
(
ai,j,k

)
(1 ≤ i ≤ m; 1 ≤ j ≤ n; 1 ≤ k ≤ p) , (2)

1.1 A ternary product
Ternary product of tensors: First proposed by Mesner and P. Bhat-
tacharya in [5,6,7] as a generalization of matrix multiplication. we
recall that A =

(
ai,j,k

)
be a tensor of dimensions (m× l × p),

B =
(
bi,j,k

)
a tensor of dimensions (m× n× l), and C =

(
ci,j,k

)
a tensor of dimensions (l × n× p); the ternary product of A, B and
C results in a tensor D =

(
di,j,k

)
of dimensions (m×n× p) denoted

D = ◦ (A,B,C) (3)

and the product is expressed by :

di,j,k =
∑

1≤t≤l
ai,t,k · bi,j,t · ct,j,k (4)

1.2 Tensor orthogonality
We recall from linear algebra that orthogonality is defined by

Q ·Q† = ∆. (5)

Similarly 3-tensor orthogonality can be defined by

◦
(
Q,Q†

2
,Q†

)
= ∆ (6)

2 3-Tensor spectrum as feature
space for point clouds

The spectral decomposition for diagonalizable matrices can be ex-
pressed as the existence of solutions to the system of equations

A = (DQ)† (ER)

∆ = Q†R

D† ?E = D†E

, (7)

where ? denote the Hadamard product.

Theorem 2.1 (Spectral Theorem for 3-Tensors) For an arbitrary
hermitian non zero 3-tensor A with ‖A‖3`3 6= 1 there exist a factor-
ization of the form:

A = ◦
(
◦
(
Q,D,DT

)
,
[
◦
(
R,E,ET

)]†2
,
[
◦
(
S,F ,F T

)]†)
∆ = ◦

(
Q, R†

2
, S†

)
(8)

where D, E, F denote scaling tensors.

For convenience we introduce the following notation for scaled ten-
sors


Q̃ = ◦

(
Q,D,DT

)
R̃ = ◦

(
R,E,ET

)
S̃ = ◦

(
S,F ,F T

) (9)

and simply expresse the tensor decomposition of A as:

A = ◦
(
Q̃, R̃

†2
, S̃
†
)

(10)

2.1 The Spectrum of n-tensors.
In order to formulate the spectral theorem for A ∈ Cln we will briefly
discuss the notion of orthogonal n-tensors, which can be expressed
as

∆ =©n
t=1

(
Q†

(n+1−t))
(11)

that is

δi1,i2,··· ,in =
∑
k

n−1∏
t=1

q
†(n+1−t)

i1,i2,··· ,it, k ,it+2··· , in

 q
†
k, i2,··· ,in

 , (12)

Where † denotes the generalized transpose conjugate operation,
which still corresponds to a cyclic permutation of the indices.

We first provide the formula for the scaling tensor whose product
with A leaves the tensor unchanged.

ai1,i2,··· ,in =
(
©
(
A,D(1),D(2),D(3), · · · ,D(n−1)

))
i1,i2,··· ,in

(13)

⇒

 ∀t < n− 2 D(t) ≡
(
d

(t)
i1,i2,··· ,in = δi2,i2+t

)
D(n−1) ≡

(
d

(n−1)
i1,i2,··· ,in = δi1,i2

) (14)

The general scaling tensors are expressed by

 ∀t < n− 2 S(t) ≡
(
s

(t)
i1,i2,··· ,in = δi2,i2+t · ωit,i2+t

)
S(n−1) ≡

(
s

(n−1)
i1,i2,··· ,in = δi1,i2 · ωi1,in−1

) (15)

where W =
(
wm,n

)
is a symmetric matrix. The expression for the

scaled orthogonal tensor is therefore expressed by

(
©
(
Q,S(1),S(2),S(3), · · · ,S(n−1)

))
i1,i2,··· ,in

= qi1,i2,··· ,in

∏
k 6=2

ωi2,ik


(16)

From which it follows that the scaled tensor which will be of the form:

Q̃ =©
(
Q,S(1),S(2),S(3), · · · ,S(n−1)

)
(17)

Theorem 2.2: (Spectral Theorem for n-Tensors): For any non zero
hermitian tensor A ∈ Cln such that ‖A‖n`n 6= 1, there exist a factor-
ization in the form


A =©n

t=1

(
Q̃
†(n+1−t)

t

)
∆ =©n

t=1

(
Q
†(n+1−t)

t

) (18)

the expression above generalizes Eq[10]

3 Polynomial formalization of
shape from point coulds

We formalize the notion of shape in two steps. First we use polyno-
mials to describe our adjacency tensors and call the resulting poly-
nomial the adjacency polynomial. The relevent domain for the ad-
jacency polynomial will be conveniently chosen to be the n-th root
of unity. Finally, we define the shape of the point cloud in terms of
invariance properties of the computed adjacency polynomial.

Consider the parametric family of polynomial rings defined for some
arbitrary field F and integers m,n, p > 0 by

F
x,y,z
(m,n,p)

:=
(
(F [x]/xm−1)[y]/(yn−1)

)
[z]/(zp−1). (19)

As a consequence of the Lagrange interpolation formula it follows
that ∀ f ∈ C [x, y, z], the unique minimal degree polynomial element
of Cx,y,z

(m,n,p)
which is congruent to f is expressed by

∑
(r0,r1,r2)∈Ωm×Ωn×Ωp

f (r0, r1, r2)

 ∏
s0∈Ωm\{r0}

(
x− s0

r0 − s0

)×
 ∏
s1∈Ωn\{r1}

(
y − s1

r1 − s1

)×
 ∏
s2∈Ωp\{r2}

(
z − s2

r2 − s2

) (20)

where

f (r0, r1, r2) := f (t0, t1, t2) mod

 t0 − r0
t1 − r1
t2 − r2

 . (21)

We note that the degrees of freedom in this encoding corresponds
precisely to that of an m × n × p 3-tensors. Having used polyno-
mials to model the adjacency structure of our hypergraph, we now
use polynomials to model shape. Given an addjacency polynomial
f ∈ C [x, y, z] we define the induced shape over Ωn × Ωn × Ωn to be
expressed by

f (p(x), p(y), p(z)) mod (tn − 1)−
∏
r∈Ωn

(t− p(r)) (22)

Conclusion and future work
Using tensor spectral analysis we have been able to model the
shape content of clouds of points. Our model for shape is provably
robust to rotation scaling, translation and arbitrary permutation of the
points in the sequence. In our future work we hope to implement fast
libraries for using the our shape model for object recognition tasks in
computer vision.
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